
 

Rivet manual 

 
 

Rivet is a popular free decoder created by Ian Wraith. This manual is derived from info from the Rivet 

website plus some additional info. Compiled for UDXF and Numbers & Oddities by Ary Boender. 

 

 
 

  



A word from the author: 

Rivet is a open source decoder written in Java which decodes various HF data modes that have either 

been forgotten by the better known decoder programs or which can only be decoded by expensive 

programs that are beyond the reach of the average hobbyist. The program doesn't need any other 

hardware to operate all it requires is a sound card with an audio feed from HF receiver. 

Those of you who have used decoder programs for HF data modes before will find Rivet a little different. 

Firstly Rivet doesn't need you to precisely tune your receiver to signal for it to be decoded. Instead Rivet 

takes advantage of a modern PCs processing power and adjusts itself to the incoming signal. This means 

you don't waste vital minutes messing around with a tuning indicator when you want to see what is 

being transmitted. The downside is that Rivet does need to run on a fairly powerful PC with at least 2 

cores. Secondly Rivet is designed not only to accept a direct sound input from a sound card but it can 

also decode data from a .WAV file (which must be mono and have a sample rate of 8 KHz). So you can 

record a transmission while you are searching through the HF spectrum and record it later. If you click 

here you will find several recordings you can use to test the program. 

 

Lastly Rivet is a free and open source program something which is very unusual for a HF data mode 

decoder. To make it better I need your input so if you find any bugs or have any feature suggestions 

please email me. If you are a programmer then use Github to fork Rivet and add some new features 

yourself then if I like them I will add them to the program. 

 

Ian Wraith 

 
 

  



Menus 

 

 
 

Main 

 Copy All to the Clipboard 

The entire contents of the screen display are copied into your clipboard. Useful if you wish to include 

a section of a decode from Rivet in an email or word processor document. 

 Load a WAV File 

Rivet not only decodes audio directly from your radio but can also decode data contained in WAV 

files which were recorded previously. Note that Rivet can only decode WAV files which were 

recorded in mono mode and at certain sample rates (usually 8000 Hz). 

 Reset Decoding State 

If this menu item is selected then Rivet resets to the default settings for the particular mode you 

have selected. So if Rivet has set its levels and symbol timing on a signal and this option is selected 

then Rivet will reset and try to reacquire levels and symbol timing. 

 Save the Current Settings 

If you click on this all of the settings you have selected (Mode etc) will be saved in a file called 

"rivet_settings.xml". From then onwards when you restart Rivet the program will load these settings 

and use them as its default. To change this select the settings you would like to be your new default 

and click on this item again. 

 Save to File 

When this option is enabled all traffic that is decoded by Rivet will also be saved to an ASCII text file. 

When you select this option a dialog box will appear requesting you give a name and a location for 

this file. 

 Save Bit Stream to File 

When you enable this option the program will ask you to select a file name and folder for the file. 

Afterwards the raw binary output from the program will be a saved in that file (which has a .bsf 

prefix). It is then possible for you to analyse the data in this file for the purpose of reverse 

engineering a mode. Please note that this option only currently works when decoding selected 

modes. 

 Soundcard Input 

When this is enabled Rivet will accept and attempt to decode audio from the audio source selected 

by your PCs mixer. I would recommend that you use your PCs Line Input source for this. 

 Exit 

Use this to shut down the program. 

 

  



Modes 

Use this menu to select the mode you wish to decode. 

 CCIR493-4 : A HF selective calling mode 

 CIS36-50 (50 baud only currently) : Used by the Russian Navy. 

 CROWD36 : Used for Russian diplomatic and intelligence messages 

 FSK200/500 : Used for Russian diplomatic and intelligence messages 

 FSK200/1000 : Used for Russian diplomatic and intelligence messages 

 FSK (raw) : For advanced users to investigate unknown FSK modes 

 GW FSK (100 baud) : A commercial ship to shore data system. 

 XPA (10 and 20 baud) : Believed used for Russian intelligence messages. 

 XPA2 : Believed used for Russian intelligence messages. 

 

Options 

 Baudot & FSK options 

Here you can enter several options for Baudot & FSK modes 

 Debug Mode 

When this mode is enabled Rivet will display debugging and diagnostic information about the signal 

it is decoding. Unless you are a developer I wouldn't recommend you enable this option. 

 Invert 

When enabled the data received by Rivet will be inverted. So for example if a FSK (Frequency Shift 

Keying) mode is being received and the high tone normally represents a 1 and a low tone a 0 , if this 

option is enabled then the high tone will represent a 0 and the low tone a 1. In some modes (e.g 

CCIR493-4) Rivet will automatically decide if Invert needs to be enabled or disabled and will change it 

accordingly. 

 Set the CROWD36 High Sync Tone 

This option is used when you are in CROWD36 mode to tell Rivet the tone number of the high sync 

tone being used by the CROWD36 station you are monitoring. 

 CIS36-50 options 

Here you can enter several options for the CIS36-50 mode. 

 

Triggers 

The author explains this function here: 

http://decodermusings.blogspot.nl/2013/02/an-introduction-to-rivet-trigger-feature.html 

 

View 

 View GW Free Channel Markers.  

If you are decoding the shore side of GW 100 baud FSK channel you will see a free channel marker 

decoded every few seconds. This will soon fill Rivets display and may become annoying. If you 

disable this option the program will ignore free channel markers and you will only see other traffic. 

 Display possible bad data 

 Display UTC time 

 Clear display 

 

  

http://decodermusings.blogspot.nl/2013/02/an-introduction-to-rivet-trigger-feature.html


Help 

 About Rivet 

Informs you of the version of Rivet you are using and some information about the author. 

 Enigma2000 

This option takes you to a web page giving information about the Enigma2000 group. 

 UDXF 

This option takes you to the UDXF website. 

 Follow Rivet Progress on Twitter 

This takes you to Rivets authors Twitter page. Follow me to find out the latest news on Rivet. 

 Help 

This takes you to the Rivet help pages. 

 Sound Sample Files 

Takes you to a web page where you can download sample sound files to decode using Rivet. 

 More Information on the Modes Decoded By Rivet 

o CCIR493-4 

o CIS36-50 

o CROWD36 

o FSK200/500 

o FSK200/1000 

o GW 100 Baud FSK 

o XPA 

o XPA2 

 

 

CCIR493-4 

 This mode is used for individual and group selective calling on the HF bands. The data consists of 

short bursts of 100 baud FSK (Frequency Shift Keying) with a shift of 170 Hz. Rivet decodes this data 

and displays it so it looks like this .. 

12:53:51 CCIR493-4 Individual Selective Call Station 2522 Calling 2519 (Routine) 

 CCIR493-4 data can either be decoded live from a HF radio connected to your soundcards line in 

input or from a prerecorded WAV file. This WAV file however must be recorded in mono mode with 

a 8000 Hz sample rate. 

 To decode this mode tune your radio to the frequency where you know CCIR493-4 is used with the 

receiver set to either USB or LSB modes. Rivet will wait for the brief CCIR493-4 synchronisation 

sequence and adapt itself from that then decide if the signal needs to be inverted or non-inverted 

automatically. 

 

CIS36 50 

 This mode can be found all over the HF bands. It is believed to be a Russian Naval mode which 

transmits FSK (Frequency Shift Keying) at a data rate of 50 baud with a 200 Hz shift and is sometimes 

known as BEE. Some stations transmitting this mode transmit constantly sending idles between 

messages while others only transmit when a message is due at fixed intervals. All the CIS36-50 

transmissions decoded so far have been encrypted and look like this .. 

 



13:19:29 Message Start 

Sync 0x1414bebe64c 

Session Key is 0x18 0x5 0x1f 0x16 0x4 0x9 0x8 0x1 0x4 0x10 

ZHGANENXGWJBAQEYEXRGBZEN 

End of Message (44 characters in this message 0 of these contained errors) 

 Rivet can decode CIS36-50 transmissions live from a HF radio (in USB mode) via the line in input on 

your computers soundcard or from a pre-recorded WAV (mono and 8000 Hz sample rate only). Rivet 

calibrates itself from the alternating idling sequence that precedes a CIS36-50 message then looks 

for a valid sync word and session key before decoding and displaying a message. 

 Note that on the LF bands CIS36-50 is transmitted at a speed of 36 baud but at the moment Rivet 

can't decode this only the 50 baud transmissions. 

 

CROWD36  

 CROWD-36 is the name given to a mode used for Russian diplomatic communications by hobbyists. It 

actual name is believed to be the "SERDOLIK" long range radio-system. It is a MFSK (Multi Frequency 

Shift Keying) system with 36 possible tones sent a speed of 40 baud. 

 Unlike most of Rivets modes CROWD36 decoding isn't automatic and requires the user to to input 

some information to aid the calibration of the program. All of the CROWD36 broadcasts I have seen 

so far start with what appears to be a synchronisation sequence made up of four tones as you can 

see in this spectrogram .. 

 CROWD36 synchronisation sequence. 

When it is CROWD36 decoding mode Rivet hunts for four tones (tone#1,tone#2,tone#3,tone#4). 

Where tone#1 = tone#3 and tone#2 = tone#4 plus tone#1 minus tone#3 is less than 100 Hz. Rivet 

then calibrates itself on tone#1 which it takes to be the tone number specified by the user. You set 

this value by clicking on the "Options" menu "Set CROWD36 High Sync Tone" and entering a number 

between 0 and 33. The broadcasts I have seen either use tone 24 or tone 31 for this value but it does 

need some experimentation and I would recommend that you record CROWD36 broadcasts (as WAV 

files , mono and 8000 Hz sample rate) then you can process that file in Rivet trying different values. 

 In the past CROWD36 transmitted encrypted information in the form of 5 digit numbers then later 

moved to online encryption. These days the mode seems to be being used for link setup information 

with the actual traffic being sent in another mode if the conditions are suitable. So frequently the 

only decoded traffic is lists of repeating characters such as below .. 

AQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAFMFMF 

MFMFMCOGISfs1ls22T 

M QLQAQAQAQAQAQAQAQAQAQAQAQAQAQ22YXSQJCTUQfs)79 

EXMQ FQHLNKDCBOYGUIAS10fs21?226?1?:571fs)+9 

EXMQ FQHLNKDCBOYGUIAS10fs21?226?1?:571fs)79 

EXMQ FQHLNKDCBOYGUIAS10fs21?226?1?:571fs)+9 

EXMQ FQHLNKDCBOYGUIAS10fs21?226?1?:571fs)79 

 There is a lot of work need doing to Rivet's CROWD36 decoder module and if anyone can provide me 

with any further information to help I would be very grateful. 

 

 

  



FSK 200/1000 

 This mode is believed to be used by the Russian intelligence services. Data is transmitted using FSK 

(Frequency Shift Keying) at a speed of 200 baud with a 1000 Hz shift. 

 

FSK 200/500 

 This mode is believed to be used by one of the Russian intelligence services. It transmits data using 

FSK (Frequency Shift Keying) modulation with the ITA-2 alphabet (with 1.5 stop bits) at a speed of 

200 baud with a shift of 500 Hz. 

 Rivet can decode FSK200/500 messages directly from a radio in USB mode connected to a 

soundcards line input or from a WAV file that is mono and with a sample rate of 8000 Hz. The 

program calibrates itself by looking at the incoming audio and then starts to decode and display the 

message on the screen. Once a message is decoding do not retune your radio until the message is 

complete. 

 When there is no message to send in a schedule the line .. 

00000++++++++++162)5761   

will be sent continuously for seven minutes. When there is a message offline encryption is sent 

which starts like this .. 

00000++++++++++188=8331 

52281013891141343 =8432 

92874574809254333 =8573 

814347960943078155=8794 

 The number to the left of the = sign appears to be the encrypted traffic and consists of 17 or 18 

digits. The number to the right is interesting also though. The last digits of this is the line number 

which you can see incrementing. The messages ends like this .. 

28870268039372698 =81275 

423345851935701126=86276 

88837514787689596 =81277 

26158186121423068 )57678 

 Certain 3 digit codes appear to have special meanings. The ones we have come across so far are .. 

162 Start of a null message 

188 Start of a message 

576 End of message or null 

 

GWK 100Bd FSK 

This mode is one of several used by a commercial communications company to contact ships at sea and 

to send data to them.  The mode is defunct now. 

 

 

 

  



XPA 

 This is a Russian mode believed to be used by at least one of the Russian intelligence services. It 

transmits data at either 10 baud (most commonly) or 20 baud using 17 tone MFSK (Multi Frequency 

Shift Keying). 

 Rivet can decode XPA live from a radio (using your soundcards line in input) or from . WAV file 

recording which is mono and with a sample rate of 11024 KHz or 8000 KHz. The program begins its 

operation by hunting for the XPA synchronization sequence by looking for four tones (tone #1 , tone 

#2 , tone #3 and tone #4) it then checks that tones #1 and #3 are the same and that tones #2 and #4 

are the same, finally it then checks that there is 760 Hz difference between tones #1 and #2. At that 

point the program calibrates its timing and the frequency offset of the transmission. Once Rivet has 

done this do NOT change the tuning of your radio. 

 A decoded XPA message looks like this .. 
13:13:58 XPA Start Tones Found (correcting by 36 Hz) 

13:14:03 High sync tone found 

13:14:03 Symbol timing found 

Block Sync 

4444444444 

Block Sync 

101 101 101 1 101 101 101 1 101 101 101 1 

4444444444 

Block Sync 

6 

Message Start 

00857 00097 93286 71395 40333 00714 17852 48857 77718 50780 37834 00215 21772 68734 13603 

85646 14094 40723 82696 11038 43675 98847 50732 30954 17592 54577 90765 62197 87165 86007 

68736 35714 24007 86209 96271 89625 35714 19269 81590 60485 02469 82980 59119 82461 77523 

86731 22993 12521 52548 97909 55084 10648 78945 97123 16673 97138 83388 34822 60415 93306 

50071 38438 27154 80657 

Block Sync 

82050 37623 04296 14200 72261 30215 93943 34679 68188 53956 79136 08478 30933 72586 38826 

06910 55823 18377 89051 96813 05847 91457 30993 17025 36671 20034 7380 08659 34217 05873 

30813 11871 61634 20351 39596 7426 

13:14:03 XPA Decode Complete 

 

XPA2 

 XPA2 is a Russian mode believed to be used by at least one of the Russian intelligence services. It 

transmits data at the unusual rate of 7.8 baud using 14 tone MFSK (Multi Frequency Shift Keying). 

 Rivet can decode XPA2 live from a radio (using your soundcards line in input) or from . WAV file 

recording which is mono and with a sample rate of 11024 KHz or 8000 KHz. The program begins its 

operation by hunting for the XPA synchronization sequence by looking for four tones (tone #1 , tone 

#2 , tone #3 and tone #4) it then checks that tones #1 and #3 are the same and that tones #2 and #4 

are the same, finally it then checks that there is 234 Hz difference between tones #1 and #2. At that 

point the program calibrates its timing and the frequency offset of the transmission. Once Rivet has 

done this do NOT alter the tuning of your radio. 

 A decoded XPA2 message looks like this .. 

 



13:49:52 XPA2 Start Tones Found (correcting by -1 Hz) 

13:50:29 Symbol timing found 

02435 00146 98804 73855 93507 32951 32279 89275 85524 53888 95942 92198 90557 04769 54888 

20926 94351 53313 31155 63773 55936 08424 26549 01634 43739 83041 11786 65426 09526 69705 

28433 53534 59595 88768 38470 64642 94623 09572 01779 46864 48326 44457 80870 13778 58331 

70218 02211 33066 78858 82209 34788 24458 27877 14600 16550 66300 53399 36220 66529 80022 

84492 18763 77921 74517 06590 40668 78325 11660 78097 35235 66565 05193 08038 23858 02838 

96632 12334 57529 31361 97524 06251 73501 56953 86309 65431 43780 17915 56730 12549 07132 

34694 22306 01444 55806 17712 69823 33014 07770 37248 06682 33638 30834 75725 02321 58679 

91992 44526 72421 05908 33798 91084 28280 23088 32018 74665 75705 58256 00465 27697 04388 

37650 93575 06837 46454 84140 47744 88681 77535 49948 27777 43165 11011 80486 68013 91912 

97794 76189 68125 99885 31533 

13:50:30 XPA2 Decode Complete 

 
 

FAQ 

 

1. Why doesn't Rivet have a .exe file ? How do I install and run it ? 

 

Rivet is written in a programming language called Java which allows it to run on computers using a 

variety of operating systems which include MS Windows , Apple OS X and Linux. Instead of having a 

.exe file it has a .jar file. To run the program you must first install Oracle Java which is free can be 

downloaded from here. To install Rivet go to the Github download page and click on the link that 

says "rivet_bxx.jar" where xx is the build number. Save that file into a folder on your PC. Then to run 

it go to that folder and double click on that .jar file , within a few seconds Rivet should run. A 

common problem is that Rivet appears to a folder containing lots of files. The usual cause of this is 

that an unzip type program has decided that it "owns" .jar files rather than Oracle Java. 

 

2. How do I know my radio is tuned correctly ? and why doesn't Rivet have a tuning aid ? 

 

That is where Rivet is different ! In the past decoders require that you tune your radio precisely to 

the audio frequencies it expects the data to be at. Rivet takes advantage of a modern computers 

amazing processing power to look at an incoming signal and then it adapts itself to the signal so no 

tuning aid is needed. This means you can also decode data you recorded in .WAV sound files 

previously. 

 

It is important to remember that Rivet adapts itself to a signal in different ways depending on the 

mode being monitored. With FSK200/500 , FSK200/1000 and GW 100 Baud FSK the program simply 

looks for the two frequencies separated by the correct bandwidth. With the MFSK modes things are 

more complex. So with XPA and XPA2 Rivet needs to see the modes start of message sequence to 

calibrate itself. 

 

  



3. Why doesn't Rivet decode this mode ? 

 

I probably just haven't got around to adding it ! Working on Rivet is a hobby of mine and sadly I 

never have as much time as I would like to work on it. If you know of a mode you would like Rivet to 

decode please contact me and tell me about it. 

 

4. How could I help improve Rivet ? 

 

I am looking for three kinds of people .. 

 

5. If you are a Java programmer and are interested in helping please use Github to fork this project and 

feel free to add any modes or make any changes you want , it is a fully Open Source project. 

However I would be very grateful if you could send me your changes so I can include them in Rivet 

and everyone can take advantage of them. 

 

I will admit that Rivets documentation needs a lot of work to improve it. If you want to help with that 

please get in touch. 

 

6. Rivet doesn’t start. If you doubleclick on a jar file, and your Java application does not start, your .jar 

association has been hijacked. You can fix the problem with Jarfix. 

http://johann.loefflmann.net/en/software/jarfix/index.html 
 

7. More Java problems. Error:  “Could not create the java virtual machine” 

 

If Jarfix doesn’t help, try this: 

Go to the Windows config screen; then System; then Advanced 

Go to Environmental Variables 

Add a new variable: 

Variable name: _JAVA_OPTIONS 

Variable value: -Xmx512M 

 

This specifies the maximum size, in bytes, of the memory allocation pool.  

 

 

http://johann.loefflmann.net/en/software/jarfix/index.html

